LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical Nanospheres with Polycrystalline Ir&Cu and Amorphous Cu2 O toward Energy-Efficient Nitrate Electrolysis to Ammonia.

Photo by mbrunacr from unsplash

Electrochemical reduction reaction of nitrate (NITRR) provides a sustainable route toward the green synthesis of ammonia. Nevertheless, it remains challenging to achieve high-performance electrocatalysts for NITRR especially at low overpotentials.… Click to show full abstract

Electrochemical reduction reaction of nitrate (NITRR) provides a sustainable route toward the green synthesis of ammonia. Nevertheless, it remains challenging to achieve high-performance electrocatalysts for NITRR especially at low overpotentials. In this work, hierarchical nanospheres consisting of polycrystalline Iridium&copper (Ir&Cu) and amorphous Cu2 O (Cux Iry Oz NS) have been fabricated. The optimal species Cu0.86 Ir0.14 Oz delivers excellent catalytic performance with a desirable NH3 yield rate (YR) up to 0.423 mmol h-1  cm-2 (or 4.8 mg h-1  mgcat -1 ) and a high NH3 Faradaic efficiency (FE) over 90% at a low overpotential of 0.69 V (or 0 VRHE ), where hydrogen evolution reaction (HER) is almost negligible. The electrolyzer toward NITRR and hydrazine oxidation (HzOR) is constructed for the first time with an electrode pair of Cu0.86 Ir0.14 Oz //Cu0.86 Ir0.14 Oz , yielding a high energy efficiency (EE) up to 87%. Density functional theory (DFT) calculations demonstrate that the dispersed Ir atom provides active site that not only promotes the NO3 - adsorption but also modulates the H adsorption/desorption to facilitate the proton supply for the hydrogenation of *N, hence boosting the NITRR. This work thus points to the importance of both morphological/structural and compositional engineering for achieving the highly efficient catalysts toward NITRR.

Keywords: nanospheres polycrystalline; energy; amorphous cu2; hierarchical nanospheres; cu0 ir0

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.