LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adsorbed p-Aminothiophenol Molecules on Platinum Nanoparticles Improve Electrocatalytic Hydrogen Evolution.

Photo from wikipedia

Electrocatalytic hydrogen evolution is an important approach to produce clean energy, and many electrocatalysts (e.g., platinum) are developed for hydrogen production. However, the electrocatalytic efficiency of commonly used metal catalysts… Click to show full abstract

Electrocatalytic hydrogen evolution is an important approach to produce clean energy, and many electrocatalysts (e.g., platinum) are developed for hydrogen production. However, the electrocatalytic efficiency of commonly used metal catalysts needs to be improved to compensate their high cost. Herein, the electrocatalytic efficiency of platinum nanoparticles (PtNPs) in hydrogen evolution is largely improved via simple surface adsorption of sub-monolayer p-aminothiophenol (PATP) molecules. The overpotential goes down to 86.1 mV, which is 50.2 mV lower than that on naked PtNPs. This catalytic activity is even better than that of 20 wt.% Pt/C, despite the much smaller active surface area of PATP-adsorbed PtNPs than Pt/C. It is theoretically and experimentally confirmed that the improved electrocatalytic activity in hydrogen evolution can be attributed to the change in electronic structure of PtNPs induced by surface adsorption of PATP molecules. More importantly, this strategy can also be used to improve the electrocatalytic activity of palladium, gold, and silver nanoparticles. Therefore, this work provides a simple, convenient, and versatile method for improving the electrocatalytic activity of metal nanocatalysts. This surface adsorption strategy may also be used for improving the efficiency of many other nanocatalysts in many reactions.

Keywords: electrocatalytic hydrogen; platinum nanoparticles; hydrogen; improve electrocatalytic; hydrogen evolution

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.