Catalyst coated membrane (CCM) is the core component of proton exchange membrane fuel cells and is routinely fabricated by spraying Pt/C slurries onto membrane, resulting in low activity and thick catalyst… Click to show full abstract
Catalyst coated membrane (CCM) is the core component of proton exchange membrane fuel cells and is routinely fabricated by spraying Pt/C slurries onto membrane, resulting in low activity and thick catalyst layer (CL, 5-10 µm) with an unaffordable Pt loading of 0.2-0.4 mg cm-2 and a large mass transfer resistance at cathode. Highly active ultrathin ultralow-Pt CL (UUCL) is urgently required, but remains rare. Herein, wet-chemical direct growth of UUCLs on both sides of membrane to achieve integrated ultrathin ultralow-Pt catalyst coated membranes (UUCCMs) with a cathodic CL thickness of 79.7 ± 15.0 nm and a Pt loading of 20.2 ± 1.6 µg cm-2 is reported. The key to this unique fabrication is the release of proton from membrane to regioselectively initiate the growth of interconnected Pd nanoneedle clusters array on membrane, followed by high-density deposition of Pt nanoparticles on Pd (Pt/Pd UUCLs). The single cell of UUCCMs exhibits the highest mass peak power density of 59.9 W mgPt,Cathode -1 in the literature. The exceptional activity originates from high electrochemically active surface area, remarkable oxygen reduction reaction activity closely correlated with strain, and electronic effect at Pt/Pd interface, as well as improved mass transfer and optimal water management.
               
Click one of the above tabs to view related content.