LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ion-Assisted Preparation of Bimetallic Porous Nanodendrites for Active and Stable Water Electrolysis.

Photo from wikipedia

Delicate electrochemical active surface area (ECSA) engineering over the exposed catalytic interface and surface topology of platinum-based nanomaterial represents an effective pathway to boost its catalytic properties toward the clean… Click to show full abstract

Delicate electrochemical active surface area (ECSA) engineering over the exposed catalytic interface and surface topology of platinum-based nanomaterial represents an effective pathway to boost its catalytic properties toward the clean energy conversion system. Here, for the first time, the facial and universal production of dendritic Pt-based nanoalloys (Pt-Ni, Co, Fe) with highly porous feature via a novel Zn2+ -mediated solution approach is demonstrated. In the presence of Zn2+ during synthesis, the competition of different galvanic replacement reactions and consequently generated "branch-to-branch" growth mode are believed to play key roles for the in situ fabrication of such unique nanostructure. Due to the fully exposed active sites and ligand effect-induced electronic optimization, electrochemical hydrogen evolution in alkaline media on these catalysts exhibit dramatic activity enhancement, delivering a current density of 30.6 mA cm-2 at a 70 mV overpotential for the Pt3 Ni nanodendrites and over 7.4 times higher than that of commercial Pt/C. This work highlights a general and powerful ion-assisted strategy for exploiting dendritic Pt-based nanostructures with efficient activities for water electrolysis.

Keywords: ion assisted; assisted preparation; water electrolysis

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.