Uranium is a key element in the preparation of nuclear fuel. An electrochemical uranium extraction technique is proposed to achieve high efficiency uranium extraction performance through HER catalyst. However, it… Click to show full abstract
Uranium is a key element in the preparation of nuclear fuel. An electrochemical uranium extraction technique is proposed to achieve high efficiency uranium extraction performance through HER catalyst. However, it is still a challenge to design and develop a high-performance hydrogen evolution reaction (HER) catalyst for rapid extraction and recovery of uranium from seawater. Herein, a bi-functional Co, Al modified 1T-MoS2 /reduced graphene oxide (CA-1T-MoS2 /rGO) catalyst, showing a good HER performance with a HER overpotential of 466 mV at 10 mA cm-2 in simulated seawater, is first developed. Benefiting from the high HER performance of CA-1T-MoS2 /rGO, efficient uranium extraction is achieved with a uranium extraction capacity of 1990 mg g-1 in simulated seawater without post-treatment, exhibiting a good reusability. The results of experiments and density functional theory (DFT) show that a high uranium extraction and recovery capability is attributed to the synergy effect of the improved HER performance and the strong adsorption capacity between U and OH*. This work provides a new strategy for the design and preparation of bi-functional catalysts with high HER performance and uranium extraction and recovery capabilities in seawater.
               
Click one of the above tabs to view related content.