LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Powered Integrated Sensing System with In-Plane Micro-Supercapacitors for Wearable Electronics.

Photo by tyronesand from unsplash

Self-powered integrated sensor with high-sensitivity physiological signals detection is indispensable for next-generation wearable electronic devices. Herein, a Ti3 C2 Tx /CNTs-based self-powered resistive sensor with solar cells and in-plane micro-supercapacitors… Click to show full abstract

Self-powered integrated sensor with high-sensitivity physiological signals detection is indispensable for next-generation wearable electronic devices. Herein, a Ti3 C2 Tx /CNTs-based self-powered resistive sensor with solar cells and in-plane micro-supercapacitors (MSCs) is successfully realized on a flexible styrene-ethylene/butylene-styrene (SEBS) electrospinning film. The prepared Ti3 C2 Tx /CNTs@SEBS/CNTs nanofiber membranes exhibit high electrical conductivity and mechanical flexibility. The laser-assisted fabricated Ti3 C2 Tx /CNTs based-MSCs demonstrate a high areal energy density of 52.89 and 9.56 µWh cm-2 with a corresponding areal power density of 0.2 and 4 mW cm-2 . Additionally, the MSCs exhibit remarkable capacity retention of 90.62% after 10 000 cycles. Furthermore, the Ti3 C2 Tx /CNTs based-sensor exhibits real-time detection capability for human facial micro-expressions and pulse single under physiological conditions. The repeated bending/release tests indicate the long-time cycle stability of the Ti3 C2 Tx /CNTs based-sensor. Owing to the excellent sensing performance, the sensing array was also fabricated. It is believed that this work develops a route for designing a self-powered sensor system with flexible production, high performance, and human-friendly characteristics for wearable electronics.

Keywords: powered integrated; micro; ti3 cnts; self powered; cnts based; sensor

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.