LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Supported Pd Nanorod Arrays for High-Efficient Nitrate Electroreduction to Ammonia.

Photo from wikipedia

Electrochemical nitrate (NO3 - ) reduction to ammonia (NH3 ) offers a promising pathway to recover NO3 - pollutants from industrial wastewater that can balance the nitrogen cycle and sustainable… Click to show full abstract

Electrochemical nitrate (NO3 - ) reduction to ammonia (NH3 ) offers a promising pathway to recover NO3 - pollutants from industrial wastewater that can balance the nitrogen cycle and sustainable green NH3 production. However, the efficiency of electrocatalytic NO3 - reduction to NH3 synthesis remains low for most of electrocatalysts due to complex reaction processes and severe hydrogen precipitation reaction. Herein, high performance of nitrate reduction reaction (NO3 - RR) is demonstrated on self-supported Pd nanorod arrays in porous nickel framework foam (Pd/NF). It provides a lot of active sites for H* adsorption and NO3 - activation leading to a remarkable NH3 yield rate of 1.52 mmol cm-2  h-1 and a Faradaic efficiency of 78% at -1.4 V versus RHE. Notably, it maintains a high NH3 yield rate over 50 cycles in 25 h showing good stability. Remarkably, large-area Pd/NF electrode (25 cm2 ) shows a NH3 yield of 174.25 mg h-1 , be promising candidate for large-area device for industrial application. In situ FTIR spectroscopy and density functional theory calculations analysis confirm that the enrichment effect of Pd nanorods encourages the adsorption of H species for ammonia synthesis following a hydrogenation mechanism. This work brings a useful strategy for designing NO3 - RR catalysts of nanorod arrays with customizable compositions.

Keywords: supported nanorod; high efficient; arrays high; nanorod arrays; nh3 yield; self supported

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.