LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Patterning of Hydrophilic and Hydrophobic Gold and Magnetite Nanoparticles by Dip Pen Nanolithography.

Photo from wikipedia

Nanoparticles offer unique physical and chemical properties. Dip pen nanolithography of nanoparticles enables versatile patterning and nanofabrication with potential application in electronics and sensing, but is not well studied yet.… Click to show full abstract

Nanoparticles offer unique physical and chemical properties. Dip pen nanolithography of nanoparticles enables versatile patterning and nanofabrication with potential application in electronics and sensing, but is not well studied yet. Herein, the patterned deposition of various nanoparticles onto unmodified silicon substrates is presented. It is shown that aqueous solutions of hydrophilic citrate and cyclodextrin functionalized gold nanoparticles as well as poly(acrylic) acid decorated magnetite nanoparticles are feasible for writing nanostructures. Both smaller and larger nanoparticles can be patterned. Hydrophobic oleylamine or n-dodecylamine capped gold nanoparticles and oleic acid decorated magnetite nanoparticles are deposited from toluene. Tip loading is carried out by dip-coating, and writing succeeds fast within 0.1 s. Also, coating with longer tip dwell times, at different relative humidity and varying frequency are studied for deposition of nanoparticle clusters. The resulting feature size is between 300 and 1780 nm as determined by scanning electron microscopy. Atomic force microscopy confirms that the heights of the deposited structures correspond to a single or double layer of nanoparticles. Higher writing speeds lead to smaller line thicknesses, offering possibilities to more complex structures. Dip pen nanolithography can hence be used to pattern nanoparticles on silicon substrates independent of the surface chemistry.

Keywords: gold; microscopy; dip pen; magnetite nanoparticles; pen nanolithography

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.