LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Activity Fe3 C as pH-Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc-Air Battery.

Photo from wikipedia

Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt-based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by… Click to show full abstract

Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt-based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3 C nanoparticles into N, S co-doped porous carbon nanosheets (Fe3 C/N,S-CNS) via high-temperature pyrolysis, in which 5-sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g-C3 N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2  = 0.86 V; Eonset  = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2  = 0.83 V, Eonset  = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3 C played in the catalytic process. The catalyst-assembled Zn-air battery also exhibits a much higher power density (163 mW cm-2 ) and ultralong cyclic stability in the charge-discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.

Keywords: oxygen reduction; reduction reaction; activity; air battery

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.