As advanced electrochemical catalysts, single-atom catalysts have made great progress in the field of catalysis and sensing due to their high atomic utilization efficiency and excellent catalytic performance. Herein, stannum-doped… Click to show full abstract
As advanced electrochemical catalysts, single-atom catalysts have made great progress in the field of catalysis and sensing due to their high atomic utilization efficiency and excellent catalytic performance. Herein, stannum-doped copper oxide (CuOSn1 ) nanosheets with single-site SnOCu pairs as active sites are synthesized as electrocatalysts for biological molecule detection. Compared with CuO-based electrochemical sensors, the CuOSn1 -based electrochemical sensors have improved detection sensitivity with a rapid electrochemical response. Theoretical calculation reveals that the single-site SnOCu pairs induced interfacial electronic transfer effect can strengthen hydroxy adsorption and thus reduce the energy barrier of the biological molecule oxidation process. As a concept application, electrochemical detection of dopamine and uric acid molecules is achieved, exhibiting satisfactory sensitivity and selectivity. This work demonstrates the advantages of single-site SnOCu pairs in electrochemical catalysis and sensing, which provides theoretical guidance for understanding the structure-activity relationship for sensitive electrochemical sensing.
               
Click one of the above tabs to view related content.