LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Size-Controlled Sulfur Nanoparticle Cathodes for Lithium-Sulfur Aviation Batteries.

Photo from wikipedia

Lithium-sulfur (Li-S) battery has been considered as a strong contender for commercial aerospace battery, but the commercialization requires Ah-level pouch cells with both efficient discharge at high rates and ultra-high… Click to show full abstract

Lithium-sulfur (Li-S) battery has been considered as a strong contender for commercial aerospace battery, but the commercialization requires Ah-level pouch cells with both efficient discharge at high rates and ultra-high energy density. In this paper, the application of lithium-sulfur batteries for powering drones by using the cathode of highly dispersed sulfur nanoparticles with well-controlled particle sizes have been realized. The sulfur nanoparticles are prepared by a precipitation method in an eco-friendly and efficient way, and loaded on graphene oxide-cetyltrimethylammonium bromide by molecular grafting to realize a large-scale fabrication of sulfur-based cathodes with superior electrochemical performance. A button cell based on the cathode exhibits an excellent discharge capacity of 62.8 mAh cm-2 at a high sulfur loading of 60 mg cm-2 (i.e., 1046.7 mAh g-1 ). The assembled miniature pouch cell (PCmini) shows a discharge capacity of 130 mAh g-1 , while the formed Ah-level pouch cell (PCAh) achieves energy density of 307 Wh kg-1 at 0.3C and 92 Wh kg-1 at 4C. Especially, a four-axis propeller drone powered by the PC has successfully completed a long flight (>3 min) at high altitudes, demonstrating the practical applicability as aviation batteries.

Keywords: aviation batteries; lithium sulfur; sulfur; design size; size controlled

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.