LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Sonodynamic Cancer Therapy through Iron-Doping and Oxygen-Vacancy Engineering of Piezoelectric Bismuth Tungstate Nanosheets.

Photo from wikipedia

Sonodynamic therapy (SDT) is regarded as a new-rising strategy for cancer treatment with low invasiveness and high tissue penetration, but the scarcity of high-efficiency sonosensitizers has seriously hindered its application.… Click to show full abstract

Sonodynamic therapy (SDT) is regarded as a new-rising strategy for cancer treatment with low invasiveness and high tissue penetration, but the scarcity of high-efficiency sonosensitizers has seriously hindered its application. Herein, the iron-doped and oxygen-deficient bismuth tungstate nanosheets (BWO-Fe NSs) with piezotronic effect are synthesized for enhanced SDT. Due to the existence of oxygen defects introduced through Fe doping, the bandgap of BWO-Fe is significantly narrowed so that BWO-Fe can be more easily activated by exogenous ultrasound (US). The oxygen defects acting as the electron traps inhibit the recombination of US-induced electrons and holes. More importantly, the dynamically renewed piezoelectric potential facilitates the migration of electrons and holes to opposite side and causes energy band bending, which further promotes the production of reactive oxygen species. Furthermore, Fe doping endows BWO-Fe with Fenton reactivity, which converts hydrogen peroxide (H2 O2 ) in tumor microenvironment into hydroxyl radicals (•OH), thereby amplifying the cellular oxidative damage and enhancing SDT. Both in vitro and in vivo experiments illustrate their high cytotoxicity and tumor suppression rate against refractory breast cancer in mice. This work may provide an alternative strategy to develop oxygen-deficient piezoelectric sonosensitizers for enhanced SDT via doping metal ions.

Keywords: bismuth tungstate; iron; therapy; tungstate nanosheets; oxygen; cancer

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.