LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Ion-Engineering Strategy to Design Hollow FeCo/CoFe2 O4 Microspheres for High-Performance Microwave Absorption.

Photo by edhoradic from unsplash

Although assembled hollow architectures have received considerable attention as lightweight functional materials, their uncontrollable self-aggregation and tedious synthetic methods hinder precise construction and modulation. Therefore, this study proposes a bi-ion… Click to show full abstract

Although assembled hollow architectures have received considerable attention as lightweight functional materials, their uncontrollable self-aggregation and tedious synthetic methods hinder precise construction and modulation. Therefore, this study proposes a bi-ion synergistic regulation strategy to design assembled hollow-shaped cobalt spinel oxide microspheres. Dominated by the coordination-etching effects of F- and the hydrolysis-complex contributions of NH4 + , the unique construction is formed attributed to the dynamic cycles between metal complexes and precipitates. Meanwhile, their basic structures are perfectly retained after reduction treatment, enabling FeCo/CoFe2 O4 bimagnetic system to be obtained. Subsequently, in-depth analyses are conducted. Investigations reveal that multiscale magnetic coupling networks and enriched air-material heterointerfaces contribute to the remarkable magnetic-dielectric behavior, supported by the advanced off-axis electron holography technique. Consequently, the obtained FeCo/CoFe2 O4 composites exhibit excellent microwave absorption performances with minimal reflection losses (RLmin ) as high as -51.6 dB, an effective absorption bandwidth (EAB) of 4.7 GHz, and a matched thickness of 1.4 mm. Thus, this work provides an informative guide for rationally assembling building blocks into hollow architectures as advanced microwave absorbers through bi-ion and even multi-ion synergistic engineering mechanisms.

Keywords: strategy design; hollow; feco cofe2; absorption; ion

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.