LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible Diode with Tunable Band Alignment for Photoelectricity-Induced Artificial Synapse.

Photo by possessedphotography from unsplash

The advent of big data era has put forward higher requirements for electronic nanodevices that have low energy consumption for their application in analog computing with memory and logic circuit… Click to show full abstract

The advent of big data era has put forward higher requirements for electronic nanodevices that have low energy consumption for their application in analog computing with memory and logic circuit to address attendant energy efficiency issues. Here, a miniaturized diode with a reversible switching state based on N-n MoS2 homojunction used a bandgap renormalization effect through the band alignment type regulated by both dielectric and polarization, controllably switched between type-I and type-II, which can be simulated as artificial synapse for sensing memory processing because of its rectification, nonvolatile characteristic and high optical responsiveness. The device demonstrates a rectification ratio of 103 . When served as memory retention time, it can attain at least 7000 s. For the synapse simulation, it has an ultralow-level energy consumption because of the pA-level operation current with 5 pJ for long-term potentiation and 7.8 fJ for long-term depression. Furthermore, the paired pulse facilitation index reaches up to 230%, and it realizes the function of optical storage that can be applied to simulate visual cells.

Keywords: artificial synapse; synapse; diode; band alignment

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.