LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering the Surface Chemistry and Morphology of Polymeric Carbon Nitrides Towards Greener Heterogeneous Catalysts for Biodiesel Synthesis.

Photo by trnavskauni from unsplash

Biodiesel remains one of the most promising alternatives to replace fossil fuel-derived petrodiesel. Nonetheless, conventional biodiesel synthesis relies on homogeneous alkali-based catalysts that involve long and tedious purification steps ,… Click to show full abstract

Biodiesel remains one of the most promising alternatives to replace fossil fuel-derived petrodiesel. Nonetheless, conventional biodiesel synthesis relies on homogeneous alkali-based catalysts that involve long and tedious purification steps , increasing biodiesel production costs. Heterogeneous catalysts have emerged as promising alternatives to circumvent these drawbacks, as they can easily be recovered and reused. Herein, polymeric carbon nitride dots and nanosheets are synthesized through a solid-phase reaction between urea and sodium citrate. Their morphology and surface chemistry are tuned by varying the precursor's ratio, and the materials are investigated as catalysts in the transesterification reaction of canola oil to biodiesel. A conversion of > 98% is achieved using a 5 wt% catalyst loading, oil to methanol ratio of 1:36 at 90 °C for 4 h, with the performance maintained over at least five reuse cycles. In addition, the effect of the transesterification reaction parameters on the reaction kinetics is evaluated, which follows a pseudo-first-order (PFO) regime. Combined with a deep understanding of the catalyst's surface, these results have allowed us to propose a reaction mechanism similar to the one observed for homogenous alkali catalysts. These carbon nitride-based nanoparticles offer a metal-free and cost-effective alternative to conventional homogeneous and metal-based heterogeneous catalysts.

Keywords: heterogeneous catalysts; chemistry; polymeric carbon; biodiesel synthesis; surface chemistry

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.