LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micellar Nanoreactors Enabled Site-Selective Decoration of Pt Nanoparticles Functionalized Mesoporous SiO2 /WO3-x Composites for Improved CO Sensing.

Photo by homajob from unsplash

Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx ) can remarkably improve its catalytic performance and maintain the functions of the carrier. However,… Click to show full abstract

Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx ) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site-selective modification strategy utilizing poly(ethylene oxide)-block-polystyrene (PEO-b-PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO-b-PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2 /WO3-x framework, and meanwhile FeOx nanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal-support interaction between FeOx and Pt. The selective modification of Pt NPs with FeOx makes the Pt NPs present an electron-deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2 /WO3-x -FeOx /Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

Keywords: mesoporous sio2; site selective; sio2 wo3

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.