LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Universal Synthesis Strategy for Lanthanide Sulfide Nanocrystals with Efficient Photocatalytic Hydrogen Production.

Photo from wikipedia

As an important lanthanide (Ln)-based functional materials, the Ln chalcogenides possess unique properties and various applications. However, the controllable synthesis of Ln chalcogenide nanocrystals still faces great challenges because of… Click to show full abstract

As an important lanthanide (Ln)-based functional materials, the Ln chalcogenides possess unique properties and various applications. However, the controllable synthesis of Ln chalcogenide nanocrystals still faces great challenges because of the rather poor affinity between Ln and chalcogenide ions (S, Se, Te) as well as strong preference of combination with existed oxygen. Herein, a facile but general heterogeneous nucleation synthetic strategy is established toward a series of colloidal ternary Cu Ln sulfides nanocrystals using the Ln dithiocarbamates and CuIĀ as precursors. To extend this synthetic protocol, similar strategy is used to prepare six kinds of high quality CuLnS2 nanocrystals, while the bulk ones are only obtained by the traditional solid-state reaction at rigorous condition. Importantly, high-entropy nanocrystals CuLnS2 and CuEux Ln2-x S3 which contain six LnĀ elements (Nd, Sm, Gd, Tb, Dy) are readily obtained by the co-decomposed process attributed to their similar diffusion speed. As a proof-of-concept application, CuEu2 S3 nanocrystals showed efficient photocatalytic hydrogen production properties.

Keywords: hydrogen production; synthesis; efficient photocatalytic; strategy; photocatalytic hydrogen

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.