LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suppression of Vanadium Oxide Dissolution via Cation Metathesis within a Coordination Supramolecular Network for Durable Aqueous Zn-V2 O5 Batteries.

Photo by dulhiier from unsplash

Aqueous zinc metal batteries (ZMBs) are a promising sustainable technology for large-scale energy storage applications. However, the water is often associated with problematic parasitic reactions on both anode and cathode,… Click to show full abstract

Aqueous zinc metal batteries (ZMBs) are a promising sustainable technology for large-scale energy storage applications. However, the water is often associated with problematic parasitic reactions on both anode and cathode, leading to the low durability and reliability of ZMBs. Here, a multifunctional separator for the Zn-V2 O5 batteries by growing the coordination supramolecular network (CSN:Zn-MBA, MBA = 2-mercaptobenzoic acid) on the conventional non-woven fabrics (NWF) is developed. CSN tends to form a stronger coordination bond as a softer cation, enabling a thermodynamically preferred Zn2+ to VO2 + substitution in the network, leading to the formation of VO2 -MBA interface, that strongly obstructs the VO2 (OH)2 - penetration but simultaneously allows Zn2+ transfer. Moreover, Zn-MBA molecules can adsorb the OTF- and distribute the interfacial Zn2+ homogeneous, which facilitate a dendrite-free Zn deposition. The Zn-V2 O5 cells with Zn-MBA@NWF separator realize high capacity of 567 mAh g-1 at 0.2 A g-1 , and excellent cyclability over 2000 cycles with capacity retention of 82.2% at 5 A g-1 . This work combines the original advantages of the template and new function of metals via cation metathesis within a CSN, provides a new strategy for inhibiting vanadium oxide dissolution.

Keywords: network; supramolecular network; via cation; coordination; coordination supramolecular

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.