LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designing N-Confused Metalloporphyrin-Based Covalent Organic Frameworks for Enhanced Electrocatalytic Carbon Dioxide Reduction.

Photo from wikipedia

Electrochemical conversion of carbon dioxide (CO2 ) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4 -Por-COFs) provide a platform for… Click to show full abstract

Electrochemical conversion of carbon dioxide (CO2 ) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4 -Por-COFs) provide a platform for rational design of electrocatalyst for CO2 reduction reaction (CO2 RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO2 RR. For MN4 -Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO2 RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN3 C1 and Co/CrN2 C2 centers are designed. Calculations indicate CoNx Cy -Por-COFs exhibit lower limiting potential (-0.76 and -0.60 V) for CO2 -to-CO reduction than its parent CoN4 -Por-COFs (-0.89 V) and make it feasible to yield deep-reduction degree C1 products CH3 OH and CH4 . Electronic structure analysis reveals that substituting CoN4 to CoN3 C1 /CoN2 C2 increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN4 to CrN3 C1 /CrN2 C2 lowers the limiting potential for CO2 -to-HCOOH reduction. This work predicts N-confused Co/CrNx Cy -Por-COFs to be high-performance CO2 RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.

Keywords: metalloporphyrin based; carbon dioxide; reduction; por cofs; co2

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.