Electrochromic (EC) reflective displays offer great advantages in delivering information and providing visual data, but are limited in dark environments. Reflective/emissive dual-modal displays capable of electrochemically-induced color and fluorescence change… Click to show full abstract
Electrochromic (EC) reflective displays offer great advantages in delivering information and providing visual data, but are limited in dark environments. Reflective/emissive dual-modal displays capable of electrochemically-induced color and fluorescence change simultaneously are highly desirable, especially possessing rapid response speed as well as long-term durability. Herein, an electroactive fluorescent ionic liquid based on triphenylamine and imidazole (EFIL-TPA) has been synthesized for reflective/emissive dual-modal display. The resultant device exhibits outstanding electrochromic/electrofluorochromic (EC/EFC) performance with low driving voltage (below 1.0 V), fast switching speed (0.57-1.8 s), and remarkable cycling durability (91% retention for 10 000 cycles). A piezoelectric nanogenerator (PENG) driven EC/EFC integrated system is fabricated to harvest energy from human motion and visually drive the color/fluorescence change for human motion indication in both bright and dark environments. This innovative EC/EFC dual-modal display device based on EFIL-TPA supports a huge space for the development of self-powered human motion visualized indication in all-light conditions.
               
Click one of the above tabs to view related content.