LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boron-Doping Induced Electron Delocalization in Fluorophosphate Cathode: Enhanced Na-Ion Diffusivity and Sodium-Ion Full Cell Performance.

Photo from wikipedia

Na3 V2 (PO4 )2 O2 F (NVPOF) is widely accepted as advanced cathode material for sodium-ion batteries with high application prospects ascribing to its considerable specific capacity and high working… Click to show full abstract

Na3 V2 (PO4 )2 O2 F (NVPOF) is widely accepted as advanced cathode material for sodium-ion batteries with high application prospects ascribing to its considerable specific capacity and high working voltage. However, challenges in the full realization of its theoretical potential lie in the novel structural design to accelerate its Na+ diffusivity. Herein, considering the important role of polyanion groups in constituting Na+ diffusion tunnels, boron (B) is doped at the P-site to obtain Na3 V2 (P2- x Bx O8 )O2 F (NVP2- x Bx OF). As evidenced by density functional theory modeling, B-doping induces a dramatic decrease in the bandgap. Delocalization of electrons on the O anions in BO4 tetrahedra is observed in NVP2- x Bx OF, which dramatically lowers the electrostatic resistance experienced by Na+ . As a result, the Na+ diffusivity in the NVP2- x Bx OF cathode has accelerated up to 11 times higher, which secures a high rate property (67.2 mAh g-1 at 60 C) and long cycle stability (95.9% capacity retention at 108.6 mAh g-1 at 10 C after 1000 cycles). The assembled NVP1.90 B0.10 OF//Se-C full cell demonstrates exceptional power/energy density (213.3 W kg-1 @ 426.4 Wh kg-1 and 17970 W kg-1 @ 119.8 Wh kg-1 ) and outstanding capability to withstand long cycles (90.1% capacity retention after 1000 cycles at 105.3 mAh g-1 at 10 C).

Keywords: delocalization; full cell; diffusivity; sodium ion; ion

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.