LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Insertion: A Master Key to Unlock Smart Photoelectric Responses of Covalent Organic Frameworks.

Photo by itfeelslikefilm from unsplash

Covalent organic frameworks (COFs) show potentials in prominent photoelectric responses by judicious structural design. However, from the selections of monomers and condensation reactions to the synthesis procedures, the acquisition of… Click to show full abstract

Covalent organic frameworks (COFs) show potentials in prominent photoelectric responses by judicious structural design. However, from the selections of monomers and condensation reactions to the synthesis procedures, the acquisition of photoelectric COFs has to meet overmuch high conditions, limiting the breakthrough and modulation in photoelectric responses. Herein, the study reports a creative "lock-key model" based on molecular insertion strategy. A COF with suitable cavity size, TP-TBDA, is used as the host to load guests. Merely through the volatilization of mixed solution, TP-TBDA and guests can be spontaneously assembled via non-covalent interactions (NCIs) to produce molecular-inserted COFs (MI-COFs). The NCIs between TP-TBDA and guests acted as a bridge to facilitate charge transfer in MI-COFs, unlocking the photoelectric responses of TP-TBDA. By exploiting the controllability of NCIs, the MI-COFs can realize the smart modulation of photoelectric responses by simply changing the guest molecule, thus avoiding the arduous selection of monomers and condensation reactions required by conventional COFs. The construction of molecular-inserted COFs circumvents complicated procedures for achieving performance improvement and modulation, providing a promising direction to construct late-model photoelectric responsive materials.

Keywords: organic frameworks; photoelectric responses; cofs; molecular insertion; covalent organic

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.