LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Roles of Cobalt-Coordinated Polymeric Perylene Diimide in Hematite Photoanodes for Improved Water Oxidation.

Photo by davidclode from unsplash

Interfacial charge recombination is a permanent issue that impedes the photon energy utilization in photoelectrochemical (PEC) water splitting. Herein, a conjugated polymer, urea linked perylene diimide polymer (PDI), is introduced… Click to show full abstract

Interfacial charge recombination is a permanent issue that impedes the photon energy utilization in photoelectrochemical (PEC) water splitting. Herein, a conjugated polymer, urea linked perylene diimide polymer (PDI), is introduced to the designation of hematite-based composite photoanodes. On account of its unique molecule structure with abundant electronegative atoms, the O and N atoms with lone electron pairs can bond with Fe atoms at the surface of Zr4+ doped α-Fe2 O3 (Zr:Fe2 O3 ) and thus establish charge transfer channels for expediting hole separation and migration. Meanwhile, PDI molecules can passivate the surface states in Zr:Fe2 O3 , which is in favor of suppressing carrier recombination. Particularly, Co2+ is used to coordinate with PDI (Co-PDI) to accelerate hole extraction as well as utilization, and the as-obtained Co-PDI form type-II heterojunction with Zr:Fe2 O3 . Such a photoanode configuration takes advantage of the unique molecule structure of PDI, and the target Co-PDI/Zr:Fe2 O3 photoanodes eventually attain a photocurrent density of 2.17 mA cm-2 , which is inspirational for unearthing the potential use of conjugative molecules in PEC fields.

Keywords: cobalt coordinated; roles cobalt; pdi; water; coordinated polymeric; perylene diimide

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.