LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Attack Resilient True Random Number Generators Using Ferroelectric-Enhanced Stochasticity in 2D Transistor.

Photo from wikipedia

By harnessing the physically unclonable properties, true random number generators (TRNGs) offer significant promises to alleviate security concerns by generating random bitstreams that are cryptographically secured. However, fundamental challenges remain… Click to show full abstract

By harnessing the physically unclonable properties, true random number generators (TRNGs) offer significant promises to alleviate security concerns by generating random bitstreams that are cryptographically secured. However, fundamental challenges remain as conventional hardware often requires complex circuitry design, showing a predictable pattern that is susceptible to machine learning attacks. Here, a low-power self-corrected TRNG is presented by exploiting the stochastic ferroelectric switching and charge trapping in molybdenum disulfide (MoS2 ) ferroelectric field-effect transistors (Fe-FET) based on hafnium oxide complex. The proposed TRNG exhibits enhanced stochastic variability with near-ideal entropy of ≈1.0, Hamming distance of ≈50%, independent autocorrelation function, and reliable endurance cycle against temperature variations. Furthermore, its unpredictable feature is systematically examined by machine learning attacks, namely the predictive regression model and the long-short-term-memory (LSTM) approach, where nondeterministic predictions can be concluded. Moreover, the generated cryptographic keys from the circuitry successfully pass the National Institute of Standards and Technology (NIST) 800-20 statistical test suite. The potential of integrating ferroelectric and 2D materials is highlighted for advanced data encryption, offering a novel alternative to generate truly random numbers.

Keywords: resilient true; true random; attack resilient; number generators; random number

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.