LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of High-Capacity MoS3 Decorated Nitrogen Doped Carbon Coated Cu2 S Electrode Structures with Dual Heterogenous Interfaces for Outstanding Sodium-Ion Storage.

Photo from wikipedia

The hierarchical Cu2 S@NC@MoS3 heterostructures have been firstly constructed by the high-capacity MoS3 and high-conductive N-doped carbon to co-decorate the Cu2 S hollow nanospheres. During the heterostructure, the middle N-doped… Click to show full abstract

The hierarchical Cu2 S@NC@MoS3 heterostructures have been firstly constructed by the high-capacity MoS3 and high-conductive N-doped carbon to co-decorate the Cu2 S hollow nanospheres. During the heterostructure, the middle N-doped carbon layer as the linker facilitates the uniform deposition of MoS3 and enhances the structural stability and electronic conductivity. The popular hollow/porous structures largely restrain the big volume changes of active materials. Due to the cooperative effect of three components, the new Cu2 S@NC@MoS3 heterostructures with dual heterogenous interfaces and small voltage hysteresis for sodium ion storage display a high charge capacity (545 mAh g-1 for 200 cycles at 0.5 A g-1 ), excellent rate capability (424 mAh g-1 at 15 A g-1 ) and ultra-long cyclic life (491 mAh g-1 for 2000 cycles at 3 A g-1 ). Except for the performance test, the reaction mechanism, kinetics analysis, and theoretical calculation have been performed to explain the reason of excellent electrochemical performance of Cu2 S@NC@MoS3 . The rich active sites and rapid Na+ diffusion kinetics of this ternary heterostructure is beneficial to the high efficient sodium storage. The assembled full cell matched with Na3 V2 (PO4 )3 @rGO cathode likewise displays remarkable electrochemical properties. The outstanding sodium storage performances of Cu2 S@NC@MoS3 heterostructures indicate the potential applications in energy storage fields.

Keywords: mos3; capacity; doped carbon; cu2 mos3; storage

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.