LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Uniform Polymer Encapsulated Organic Nanocrystals through Ouzo Nanocrystallization.

Photo from wikipedia

Nanocrystals (NCs) are widely used in optoelectronics, photocatalysis, and bioimaging. As the surface area to volume ratio increases with a decrease in the size of NCs, strategies to control the… Click to show full abstract

Nanocrystals (NCs) are widely used in optoelectronics, photocatalysis, and bioimaging. As the surface area to volume ratio increases with a decrease in the size of NCs, strategies to control the size of NCs are highly valuable for many applications. Given the importance of photoluminescent dyes, especially those with aggregation-induced emission, the transformation from an amorphous to a crystalline state can yield a drastic enhancement in their optical properties, which is of significance for biomedical applications. Till now, there is no general method available for the synthesis of small NCs with accurate control over the size and uniformity. Herein, a simple and general approach of ouzo nanocrystallization is presented for the synthesis of small (<100 nm) and highly uniform (polydispersity index~0.1) NCs with good control over the size. The process of nanoprecipitation is used to synthesize uniform nanoparticles (NPs) with different size, which is followed by solvent addition to form swollen NPs. Further, the amorphous core of swollen NPs is converted into NCs within polymer shell under Ouzo zone, which restricts NCs to grow above certain size. To demonstrate the general applicability of ouzo nanocrystallization, two different classes of luminescent materials are used as examples to fabricate small and highly uniform NCs.

Keywords: size; control size; polymer; synthesis uniform; ouzo nanocrystallization

Journal Title: Small methods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.