LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial Nanoplatelets Depend on Size for Precisely Inducing Thrombosis in Tumor Vessels.

Photo from wikipedia

Due to the heterogeneity of a tumor, the tumor vascular interruption-based therapy has become an ideal treatment strategy. Herein, artificial nanoplatelets are reported to induce selective thrombosis in tumor vessels,… Click to show full abstract

Due to the heterogeneity of a tumor, the tumor vascular interruption-based therapy has become an ideal treatment strategy. Herein, artificial nanoplatelets are reported to induce selective thrombosis in tumor vessels, which can achieve rapid and large-scale necrosis of tumor cells. For one, the nanoplatelets are exploited to specially release thrombin into target regions without affecting the established coagulation factors system. For another, the thrombin elicits vascular infarction to provide tumor-ablation effects. More importantly, the size-dependent effect of nanoplatelets (with diameters of 200, 400, and 800 nm) in vivo on blocking the tumor vessels is evaluated. The results show that the nanoplatelets from nanometer to submicron have achieved different biodistribution and therapeutic effects through the vascular transport. Notably, 400 nm scale nanoplatelets can induce thrombosis in tumor vessels and achieve 83% of the tumor elimination rate, thus manifesting the effectiveness of anti-tumor strategy compared with the other two scales of nanoplatelets (200 and 800 nm). These findings highlight the need of concern about nanoparticle size, providing a promising strategy for the future design of advanced vascular targeting reagents and the clinical translation of tumor vascular interruption-based therapy.

Keywords: tumor; size; artificial nanoplatelets; thrombosis tumor; tumor vessels

Journal Title: Small methods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.