Expanding micro-/nanostructures into 3D ones results not only in boosting structural integration level with compact geometry but also enhancing a device's complexity and functionality. Herein, a synergetic 3D micro-/nanoshape transformation is… Click to show full abstract
Expanding micro-/nanostructures into 3D ones results not only in boosting structural integration level with compact geometry but also enhancing a device's complexity and functionality. Herein, a synergetic 3D micro-/nanoshape transformation is proposed by combining kirigami and rolling-up techniques, or rolling-up kirigami, for the first time. As an example, micro-pinwheels with multiple flabella are patterned on pre-stressed bilayer membranes and rolled up into 3D structures. The flabella are designed when they are patterned on a 2D thin film, facilitating the integration of micro-/nanoelement and other functionalization processes during 2D patterning, which is typically much easier than post-shaping an as-fabricated 3D structure by removing redundant materials or 3D printing. The dynamic rolling-up process is simulated using elastic mechanics with a movable releasing boundary. Mutual competition and cooperation among flabella are observed during the whole release process. More importantly, the mutual conversion between translation and rotation offers a reliable platform for developing parallel microrobots and adaptive 3D micro-antennas. Additionally, 3D chiral micro-pinwheel arrays integrated into a microfluidic chip are successfully applied to detect organic molecules in solution using a terahertz apparatus. With an extra actuation, active micro-pinwheels can potentially serve as a base to functionalize 3D kirigami as tunable devices.
               
Click one of the above tabs to view related content.