Catalysts with FeNC moieties have demonstrated remarkable activity toward oxygen reduction reaction (ORR), but precise synthesis and configuration regulation of FeNC to achieve bi-functional catalytic sites for ORR and oxygen… Click to show full abstract
Catalysts with FeNC moieties have demonstrated remarkable activity toward oxygen reduction reaction (ORR), but precise synthesis and configuration regulation of FeNC to achieve bi-functional catalytic sites for ORR and oxygen evolution reaction (OER) remain a great challenge. Herein, a pomegranate-like catalyst with optimized FeN4 configuration is designed. The unique framework affords a large surface area for sufficient active site exposure and abundant macroporous channels for mass transport. By twisting chemical bonds, the electronic structure of FeN4 is regulated, and the adsorption/desorption of oxygen species is facilitated. Compared to noble metal-based catalysts (Pt/C+IrO2 ), the optimized FeNC exhibits impressive onset potential (0.96 V versus reversible hydrogen electrode), larger limiting current density (5.85 mA cm-2 ), and better long-term life for ORR, as well as, lower OER overpotential. When integrated into Zn-air batteries, it demonstrates a respectable peak power density (71.6 mW cm-2 ) and ideal cycling stability (30 h), exceeding that of commercial Pt/C+IrO2 . The exploration offers a guideline for designing advanced bi-functional electrocatalysts.
               
Click one of the above tabs to view related content.