LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amorphization-Modulated Metal Sulfides with Boosted Active Sites and Kinetics for Efficient Enzymatic Colorimetric Biodetection.

Photo by clemono from unsplash

Colorimetric biosensing has become a popular sensing method for the portable detection of a variety of biomarkers. Artificial biocatalysts can replace traditional natural enzymes in the fields of enzymatic colorimetric… Click to show full abstract

Colorimetric biosensing has become a popular sensing method for the portable detection of a variety of biomarkers. Artificial biocatalysts can replace traditional natural enzymes in the fields of enzymatic colorimetric biodetection; however, the exploration of new biocatalysts with efficient, stable, and specific biosensing reactions has remained challenging so far. Here, to enhance the active sites and overcome the sluggish kinetics of metal sulfides, the creation of an amorphous RuS2 (a-RuS2 ) biocatalytic system is reported, which can dramatically boost the peroxidase-mimetic activity of RuS2 for the enzymatic detection of diverse biomolecules. Due to the existence of abundant accessible active sites and mildly surface oxidation, the a-RuS2 biocatalyst displays a twofold Vmax value and much higher reaction kinetics/turnover number (1.63 × 10-2 s-1 ) compared to that of the crystallized RuS2 . Noticeably, the a-RuS2 -based biosensor shows an extremely low detection limit of H2 O2 (3.25 × 10-6 m), l-cysteine (3.39 × 10-6 m), and glucose (9.84 × 10-6 m), respectively, thus showing superior detection sensitivity to many currently reported peroxidase-mimetic nanomaterials. This work offers a new path to create highly sensitive and specific colorimetric biosensors in detecting biomolecules and also provides valuable insights for engineering robust enzyme-like biocatalysts via amorphization-modulated design.

Keywords: colorimetric biodetection; enzymatic colorimetric; active sites; amorphization modulated; metal sulfides; detection

Journal Title: Small methods
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.