LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation of PD-L1 Extracellular Vesicle Subpopulations Using DNA Computation Mediated Microfluidic Tandem Separation.

Photo from wikipedia

Accurate isolation of targeted extracellular vesicle (EV) is challenging due to the antigenic heterogeneity of EV subpopulations which are from different cell origins. Most EV subpopulations lack a single marker… Click to show full abstract

Accurate isolation of targeted extracellular vesicle (EV) is challenging due to the antigenic heterogeneity of EV subpopulations which are from different cell origins. Most EV subpopulations lack a single marker whose expression cleanly distinguishes them from mixed populations of closely related EVs. Here, a modular platform capable of taking multiple binding events as input, performing logic computations, and producing two independent outputs for tandem microchips for EV subpopulation isolation, is developed. Taking advantages of the excellent selectivity of dual-aptamer recognition and the sensitivity of tandem microchips, this method achieves, for the first time, sequential isolation of tumor PD-L1 EVs and non-tumor PD-L1 EVs. As a result, the developed platform can not only effectively distinguish cancer patients from healthy donors but also provides new clues for assessing immune heterogeneity. Moreover, the captured EVs can be released through a DNA hydrolysis reaction with high efficiency, which is compatible with downstream mass spectrometry for EV proteome profiling. Overall, this strategy is expected to isolate different EV subpopulations, translate EVs into reliable clinical biomarkers, and accurately investigate the biological functions of different EV subsets.

Keywords: extracellular vesicle; isolation extracellular; subpopulations using; isolation; vesicle subpopulations

Journal Title: Small methods
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.