LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Vibration Frequency on Laser Filler Wire Welded Joints

Photo from wikipedia

The effects of different vibration frequencies on the microstructure, residual stress, and fatigue life of welded joints are investigated using laser filler wire welding combined with mechanical vibration. The results… Click to show full abstract

The effects of different vibration frequencies on the microstructure, residual stress, and fatigue life of welded joints are investigated using laser filler wire welding combined with mechanical vibration. The results show that the vibration frequency of 1055 Hz has a significant effect on the melting width of the laser welding with filler wire joint. The welds have three morphological features of columnar crystals, dendrites, and equiaxed crystals. In addition, the welds with 1055 Hz vibration frequency have the most equiaxed crystals and the highest hardness. The vibration frequency of 524 Hz increases the residual stress of the welded joint by 16%, whereas the vibration frequency of 1055 Hz reduces its residual stress by 8%. It can be shown by tensile experiments that the laser filler wire–welded joints have a higher tensile strength and greater elongation with increase in the vibration frequency. The fracture observation shows that the cleavage step appears in the crack propagation zone. Compared with the vibration frequency of 524 Hz, fatigue fracture at the 1055 Hz vibration has narrower fatigue striation spacing, lower crack growth rate, and higher fatigue life.

Keywords: filler wire; vibration frequency; vibration

Journal Title: steel research international
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.