LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Methodology Development for Improving Energy Utilization and Reducing Fluoride Pollution of the Electroslag Remelting Process: A Review

Photo from wikipedia

Traditional electroslag remelting (ESR) technology using the slag with a high CaF2 content is faced with a high specific power consumption and fluoride pollution. Under double pressure, it is therefore… Click to show full abstract

Traditional electroslag remelting (ESR) technology using the slag with a high CaF2 content is faced with a high specific power consumption and fluoride pollution. Under double pressure, it is therefore very important to have a good understanding of the ESR process. The energy utilization, η, of the ESR depends on both the electrical, ηE, and thermal efficiency, ηH. Tailoring slag composition is one of the useful techniques to enhance energy utilization, because slag is very important to generate Joule heat for melting electrodes, control horizontal heat transfer, and maintain uniform distribution of alloy elements from the bottom to top of the remelted ingots in the ESR process. Therefore, herein, the aim is to review the effects of slag composition, especially CaF2 content, and temperature on the electrical conductivity and thermal conductivity, which further influence the heat balance during the ESR process. The volatilization mechanism of the liquid fluoride‐containing slag at an elevated temperature is introduced from the perspective of thermodynamics and kinetics. Meanwhile, some of the recent advances and technology improvements in energy utilization and productivity enhancements for the ESR process are summarized, which provide benefits to achieve sustainable development for the ESR process.

Keywords: process; esr process; methodology; energy utilization

Journal Title: steel research international
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.