Herein, we report our recent research concerning the development of halloysite based protocols for cleaning, consolidation and protection purposes. Surface modification of halloysite cavity by anionic surfactants was explored to… Click to show full abstract
Herein, we report our recent research concerning the development of halloysite based protocols for cleaning, consolidation and protection purposes. Surface modification of halloysite cavity by anionic surfactants was explored to fabricate inorganic micelles able to solubilize hydrophobic contaminants. Hybrid dispersions based on halloysite and ecocompatible polymers were tested as consolidants for paper and waterlogged archaeological woods. Encapsulation of deacidifying and flame retardant agents within the halloysite lumen was conducted with aim to obtain nanofiller with a long-term protection ability. The results prove the suitability and versatility of halloysite nanotubes, which are perspective inorganic nanoparticles within materials science, remedation and conservation of cultural heritage fields.
               
Click one of the above tabs to view related content.