LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Supported Transition Metal-Based Nanoarrays for Efficient Energy Storage.

Photo from wikipedia

Rechargeable batteries and supercapacitors are currently considered as promising electrochemical energy storage (EES) systems to address the energy and environment issues. Self-supported transition metal (Ni, Co, Mn, Mo, Cu, V)-based… Click to show full abstract

Rechargeable batteries and supercapacitors are currently considered as promising electrochemical energy storage (EES) systems to address the energy and environment issues. Self-supported transition metal (Ni, Co, Mn, Mo, Cu, V)-based materials are promising electrodes for EES devices, which offer highly efficient charge transfer kinetics. This review summarizes the latest development of transition metal-based materials with self-supported structures for EES systems. Special focus has been taken on the synthetic methods, the selection of substrates, architectures and chemical compositions of different self-supported nanoarrays in energy storage systems. Finally, the challenges and opportunities of these materials for future development in this field are briefly discussed. We believe that the advancement in self-supported electrode materials would pave the way towards next-generation EES.

Keywords: energy; metal based; self supported; energy storage; transition metal

Journal Title: Chemical record
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.