LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cultivation of agarose‐based microfluidic hydrogel promotes the development of large, full‐thickness, tissue‐engineered articular cartilage constructs

Photo from wikipedia

The fabrication of tissue‐engineered constructs of clinically relevant sizes continues to be plagued by poor nutrient transport to the interior of the construct. Consequences of poor mass transfer to the… Click to show full abstract

The fabrication of tissue‐engineered constructs of clinically relevant sizes continues to be plagued by poor nutrient transport to the interior of the construct. Consequences of poor mass transfer to the construct core include large gradients in cell viability and matrix deposition, as well as inadequate mechanical functionality. Prior literature has shown that embedded microfluidic channels offer the potential to control the spatial and temporal presentation of hydrodynamic and chemical cues within the developing tissue construct toward improved mass transfer. The current state of the art in microfluidic constructs, however, has fallen short of achieving sufficient thickness and robustness of constructs for further development towards translation. Towards this goal, we designed a microfluidic tissue construct and established bioprocessing conditions to meet nutrient transport requirements of a large, full‐thickness, articular cartilage construct over a 2 week culture period. Our microfluidic constructs of 2.5 and 5 mm thicknesses showed enhanced cell proliferation relative to statically cultured constructs. These constructs, which are both thick and robust to culture periods of sufficient length to support extracellular matrix development, represent an important improvement over previously reported constructs which were thinner and lacking in extracellular matrix (most likely attributable to too‐short culture periods). Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: construct; thickness; large full; tissue; tissue engineered; development

Journal Title: Journal of Tissue Engineering and Regenerative Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.