LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recombinant human type II collagen hydrogel provides a xeno‐free 3D micro‐environment for chondrogenesis of human bone marrow‐derived mesenchymal stromal cells

Photo from wikipedia

Recombinant human type II collagen (rhCII) hydrogel was tested as a xeno‐free micro‐environment for the chondrogenesis of human bone marrow‐derived mesenchymal stromal cells (BM‐MSCs). The rhCII hydrogels were seeded with… Click to show full abstract

Recombinant human type II collagen (rhCII) hydrogel was tested as a xeno‐free micro‐environment for the chondrogenesis of human bone marrow‐derived mesenchymal stromal cells (BM‐MSCs). The rhCII hydrogels were seeded with BM‐MSCs and cultured in a xeno‐free chondro‐inductive medium for 14, 28 and 84 days. High‐density pellet cultures served as controls. The samples were subjected to biochemical, histological and gene expression analyses. Although the cells deposited glycosaminoglycans into the extracellular space significantly more slowly in the rhCII hydrogels compared to the high‐density pellets, a similar potential of matrix deposition was reached by the end of the 84‐day culture. At day 28 of culture, the gene expression level for cartilage marker genes (i.e. genes encoding for Sox9 transcription factor, Collagen type II and Aggrecan) were considerably lower in the rhCII hydrogels than in the high‐density pellets, but at the end of the 84‐day culture period, all the cartilage marker genes analysed were expressed at a similar level. Interestingly, the expression of the matrix metallopeptidases (MMP)‐13, MMP‐14 and MMP‐8, i.e. extracellular collagen network‐degrading enzymes, were transiently upregulated in the rhCII hydrogel, indicating active matrix reorganization. This study demonstrated that the rhCII hydrogel functions as a xeno‐free platform for BM‐MSC chondrogenesis, although the process is delayed. The reversible catabolic reaction evoked by the rhCII hydrogel might be beneficial in graft integration in vivo and pinpoints the need to further explore the use of hydrogels containing recombinant extracellular matrix (ECM) proteins to induce the chondrogenesis of MSCs. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: collagen; recombinant human; hydrogel; chondrogenesis; xeno free; type

Journal Title: Journal of Tissue Engineering and Regenerative Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.