LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix completion from a computational statistics perspective

Photo from wikipedia

In the matrix completion problem, we seek to estimate the missing entries of a matrix from a small sample of the total number of entries in a matrix. While this… Click to show full abstract

In the matrix completion problem, we seek to estimate the missing entries of a matrix from a small sample of the total number of entries in a matrix. While this task is hopeless in general, structured matrices that are appropriately sampled can be completed with surprising accuracy. In this review, we examine the success behind low‐rank matrix completion, one of the most studied and employed versions of matrix completion. Formulating the matrix completion problem as a low‐rank matrix estimation problem admits several strengths: good empirical performance on real data, statistical guarantees, and practical algorithms with convergence guarantees. We also examine how matrix completion relates to the classical study of missing data analysis (MDA) in statistics. By drawing on the MDA perspective, we see opportunities to weaken the commonly enforced assumption of missing completely at random in matrix completion.

Keywords: statistics perspective; matrix completion; computational statistics; completion computational; completion

Journal Title: Wiley Interdisciplinary Reviews: Computational Statistics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.