Grouping selection arises naturally in many statistical modeling problems. Several group selection methods have been proposed in the last two decades. In this paper, we review the Bayesian group selection… Click to show full abstract
Grouping selection arises naturally in many statistical modeling problems. Several group selection methods have been proposed in the last two decades. In this paper, we review the Bayesian group selection approaches for linear regression models. We start from the Bayesian indicator approach and then move to the Bayesian group LASSO methods. In addition, we also consider the Bayesian methods for the sparse group selection that can be treated as an extension of the group selection. Finally, we mention some extensions of Bayesian group selection for the generalized linear models and the multiple response models.
               
Click one of the above tabs to view related content.