It is generally accepted that the phospholipid bilayer of the cell membrane is impermeable for proteins and peptides and that these molecules require special mechanisms for their transport from the… Click to show full abstract
It is generally accepted that the phospholipid bilayer of the cell membrane is impermeable for proteins and peptides and that these molecules require special mechanisms for their transport from the extra- to the intracellular space. Recently there is increasing evidence that certain proteins/peptides can also directly cross the phospholipid membrane. SERPINA5 (protein C inhibitor) is a secreted protease inhibitor with broad protease reactivity and wide tissue distribution. It binds glycosaminoglycans and certain phospoholipids, which can modulate its inhibitory activity. SERPINA5 has been shown to be internalized by platelets, granulocytes, HL-60 promyelocytic leukemia cells, and by Jurkat lymphoma cells. Once inside the cell it can translocate to the nucleus. There are several indications that SERPINA5 can directly cross the phospholipid bilayer of the cell membrane. In this review we will describe what is known so far about the conditions, as well as the cellular and molecular requirements for SERPINA5 translocation through the cell membrane and for its penetration of pure phospholipid vesicles.
               
Click one of the above tabs to view related content.