LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pooled Human Serum Increases Regenerative Potential of In Vitro Expanded Stem Cells from Human Extracted Deciduous Teeth.

Photo by liubovilchuk from unsplash

In regenerative therapy, in vitro expansion of stem cells is critical to obtain a significantly higher number of cells for successful engraftment after transplantation. However, stem cells lose its regenerative… Click to show full abstract

In regenerative therapy, in vitro expansion of stem cells is critical to obtain a significantly higher number of cells for successful engraftment after transplantation. However, stem cells lose its regenerative potential and enter senescence during in vitro expansion. In this study, the influence of foetal bovine serum (FBS) and pooled human serum (pHS) on the proliferation, morphology and migration of stem cells from human extracted deciduous teeth (SHED) was compared. SHED (n = 3) was expanded in KnockOut DMEM supplemented with either pHS (pHS-SM) or FBS (FBS-SM). pHS was prepared using peripheral blood serum of six healthy male adults, aged between 21 and 35 years old. The number of live SHED was significantly higher, from passage 5 to 7, when cultured in pHS-SM compared to those cultured in FBS-SM (p < 0.05). Number of cells having flattened morphology, characteristics of partially differentiated and senescent cells, was significantly lower (p < 0.05) in pHS-SM (3%) compared to those in FBS-SM (7%). Furthermore, migration of SHED in pHS-SM was found to be more directional. The presence of selected ten paracrine factors known for their proliferation and migration potential was detected in all six individual human sera, used to produce pHS, none of which were detected in FBS. Ingenuity Pathway Analysis showed the possible involvement of the 'ephrin receptor signalling pathway' to regulate the proliferation and migration of SHED in pHS-SM. In conclusion, pHS-SM showed significantly higher proliferation rate and could maintain significantly lower number of senescent cells and support directional migration of cells.

Keywords: serum; migration; vitro; phs; stem cells

Journal Title: Advances in experimental medicine and biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.