Several times per second, humans make rapid eye movements called saccades which redirect their gaze to sample new regions of external space. Saccades present unique challenges to both perceptual and… Click to show full abstract
Several times per second, humans make rapid eye movements called saccades which redirect their gaze to sample new regions of external space. Saccades present unique challenges to both perceptual and motor systems. During the movement, the visual input is smeared across the retina and severely degraded. Once completed, the projection of the world onto the retina has undergone a large-scale spatial transformation. The vector of this transformation, and the new orientation of the eye in the external world, is uncertain. Memory for the pre-saccadic visual input is thought to play a central role in compensating for the disruption caused by saccades. Here, we review evidence that memory contributes to (1) detecting and identifying changes in the world that occur during a saccade, (2) bridging the gap in input so that visual processing does not have to start anew, and (3) correcting saccade errors and recalibrating the oculomotor system to ensure accuracy of future saccades. We argue that visual working memory (VWM) is the most likely candidate system to underlie these behaviours and assess the consequences of VWM's strict resource limitations for transsaccadic processing. We conclude that a full understanding of these processes will require progress on broader unsolved problems in psychology and neuroscience, in particular how the brain solves the object correspondence problem, to what extent prior beliefs influence visual perception, and how disparate signals arriving with different delays are integrated.
               
Click one of the above tabs to view related content.