LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Annotation of Specialized Metabolites from High-Throughput and High-Resolution Mass Spectrometry Metabolomics.

Photo by shalone86 from unsplash

High-throughput mass spectrometry (MS) metabolomics profiling of highly complex samples allows the comprehensive detection of hundreds to thousands of metabolites under a given condition and point in time and produces… Click to show full abstract

High-throughput mass spectrometry (MS) metabolomics profiling of highly complex samples allows the comprehensive detection of hundreds to thousands of metabolites under a given condition and point in time and produces information-rich data sets on known and unknown metabolites. One of the main challenges is the identification and annotation of metabolites from these complex data sets since the number of authentic standards available for specialized metabolites is far lower than an account for the number of mass spectral features. Previously, we reported two novel tools, MetNet and MetCirc, for putative annotation and structural prediction on unknown metabolites using known metabolites as baits. MetNet employs differences between m/z values of MS1 features, which correspond to metabolic transformations, and statistical associations, while MetCirc uses MS/MS features as input and calculates similarity scores of aligned spectra between features to guide the annotation of metabolites. Here, we showcase the use of MetNet and MetCirc to putatively annotate metabolites and provide detailed instructions as to how those can be used. While our case studies are from plants, the tools find equal utility in studies on bacterial, fungal, or mammalian xenobiotic samples.

Keywords: spectrometry metabolomics; specialized metabolites; mass spectrometry; mass; annotation; high throughput

Journal Title: Methods in molecular biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.