LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recombinant Production of Monomeric Isotope-Enriched Aggregation-Prone Peptides: Polyglutamine Tracts and Beyond.

Photo by austriannationallibrary from unsplash

High solvent exposure of certain sequences located in intrinsically disordered regions (IDRs) may eventually lead to aggregation, as is the case for some low-complexity regions (LCRs) and short linear motifs… Click to show full abstract

High solvent exposure of certain sequences located in intrinsically disordered regions (IDRs) may eventually lead to aggregation, as is the case for some low-complexity regions (LCRs) and short linear motifs (SLiMs). In particular, polyglutamine (polyQ) tracts are LCRs of variable length highly enriched in glutamine residues. They are common in transcription factors, and their length can have an impact on transcriptional activity. In nine proteins, polyQ tract expansions beyond specific thresholds cause nine neurodegenerative diseases, and aggregates formed by the protein harboring the polyQ tract can be detected in affected individuals. A structural characterization of polyQ proteins in their monomeric form is key to understand how their expansion can affect their aggregation propensity. In this regard, nuclear magnetic resonance (NMR) spectroscopy can provide high-resolution structural information. Here, we present a protocol to prepare monomeric samples of isotope-enriched short helical polyQ peptides based on the sequence of the androgen receptor (AR) suitable for NMR characterization and suggest different ways to adapt it for the production and monomerization of other relatively short IDR sequences and SLiMs.

Keywords: isotope enriched; aggregation; production monomeric; recombinant production; monomeric isotope

Journal Title: Methods in molecular biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.