LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Self-assembly Approach as a Tool for the Tissue Engineering of a Bi-lamellar Human Cornea.

Photo from wikipedia

Tissue engineering is a flourishing field of regenerative medicine that allows the reconstruction of various tissues of our body, including the cornea. In addition to addressing the growing need for… Click to show full abstract

Tissue engineering is a flourishing field of regenerative medicine that allows the reconstruction of various tissues of our body, including the cornea. In addition to addressing the growing need for organ transplants, such tissue-engineered substitutes may also serve as good in vitro models for fundamental and preclinical studies. Recent progress in the field of corneal tissue engineering has led to the development of new technologies allowing the reconstruction of a human bi-lamellar cornea. One unique feature of this model is the complete absence of exogenous material. Indeed, these human corneal equivalents are exclusively composed of untransformed human corneal fibroblasts (hCFs) entangled in their own extracellular matrix, as well as untransformed human corneal epithelial cells (hCECs), both of which isolated from donor corneas. The reconstructed human bi-lamellar cornea thereby exhibits a well-organized stroma as well as a well-differentiated epithelium. This chapter describes the methods used for the isolation and culture of hCFs, the production and assembly of hCFs stromal sheets, the seeding of hCECs, and the maturation of the tissue-engineered cornea.

Keywords: human corneal; cornea; tissue engineering; tissue

Journal Title: Methods in molecular biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.