LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monitoring Single S. cerevisiae Cells with Multifrequency Electrical Impedance Spectroscopy in an Electrode-Integrated Microfluidic Device.

Photo from wikipedia

This chapter describes an electrode-integrated microfluidic system with multiple functions of manipulating and monitoring single S. cerevisiae cells. In this system, hydrodynamic trapping and negative dielectrophoretic (nDEP) releasing of S.… Click to show full abstract

This chapter describes an electrode-integrated microfluidic system with multiple functions of manipulating and monitoring single S. cerevisiae cells. In this system, hydrodynamic trapping and negative dielectrophoretic (nDEP) releasing of S. cerevisiae cells are implemented, providing a flexible method for single-cell manipulation. The multiplexing microelectrodes also enable sensitive electrical impedance spectroscopy (EIS) to discern the number of immobilized cells, classify different orientations of captured cells, as well as detect potential movements of immobilized single yeast cells during the overall recording duration by using principal component analysis (PCA) in data mining. The multifrequency EIS measurements can, therefore, obtain sufficient information of S. cerevisiae cells at single-cell level.

Keywords: cerevisiae cells; integrated microfluidic; monitoring single; spectroscopy; electrode integrated

Journal Title: Methods in molecular biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.