LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Purification of Functional Platelet Mitochondria Using a Discontinuous Percoll Gradient.

Photo from wikipedia

The isolation of mitochondria is gaining importance in experimental and clinical laboratory settings. Of interest, mitochondria and mitochondrial components (i.e., circular mitochondrial DNA, N-formylated peptides, cardiolipin) have been involved in… Click to show full abstract

The isolation of mitochondria is gaining importance in experimental and clinical laboratory settings. Of interest, mitochondria and mitochondrial components (i.e., circular mitochondrial DNA, N-formylated peptides, cardiolipin) have been involved in several human inflammatory pathologies, such as cancer, Alzheimer's disease, Parkinson's disease, and rheumatoid arthritis. While several mitochondrial isolation methods have been previously published, these techniques are aimed at yielding mitochondria from cell types other than platelets. In addition, little information is known on the number of platelet-derived microvesicles that can contaminate the mitochondrial preparation or even the overall quality as well as functional and structural integrity of mitochondria. Here we describe a purification method, using a discontinuous Percoll gradient, yielding mitochondria of high purity and integrity from human platelets.

Keywords: discontinuous percoll; using discontinuous; purification; platelet; percoll gradient

Journal Title: Methods in molecular biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.