LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron Attachment to Isolated Molecules as a Probe to Understand Mitochondrial Reductive Processes.

Photo from wikipedia

This chapter describes the complementary experimental techniques Electron Transmission Spectroscopy and Dissociative Electron Attachment Spectroscopy, two of the most suitable means for investigating interactions between electrons and gas-phase molecules, resonance… Click to show full abstract

This chapter describes the complementary experimental techniques Electron Transmission Spectroscopy and Dissociative Electron Attachment Spectroscopy, two of the most suitable means for investigating interactions between electrons and gas-phase molecules, resonance formation of temporary molecular negative ions, and their possible decay through the dissociative electron attachment (DEA) mechanism. The latter can be seen as the gas-phase counterpart of the transfer of a solvated electron in solution, accompanied by dissociation of the molecular anion, referred to as dissociative electron transfer (DET). DET takes place in vivo under reductive conditions, for instance, in the intermembrane space of mitochondria under interaction of xenobiotic molecules possessing high electron affinity with electrons "leaked" from the mitochondrial respiratory chain. A likely mechanism of the toxic activity of dichlorodiphenyltrichloroethane based on its DEA properties is briefly outlined, and compared with the well-established harmful effects of the model toxicant carbon tetrachloride ascribed to reductive dechlorination in a cellular ambient. A possible mechanism of the antioxidant activity of polyphenolic compounds present near the main site of superoxide anion production in mitochondria is also briefly discussed.

Keywords: electron attachment; attachment isolated; dissociative electron; spectroscopy

Journal Title: Methods in molecular biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.