LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica.

Photo from wikipedia

Recent developments in RNA-guided nuclease technologies have advanced the engineering of a wide range of organisms, including the nonconventional yeast Yarrowia lipolytica. Y. lipolytica has been the focus of a… Click to show full abstract

Recent developments in RNA-guided nuclease technologies have advanced the engineering of a wide range of organisms, including the nonconventional yeast Yarrowia lipolytica. Y. lipolytica has been the focus of a range of synthetic biology and metabolic engineering studies due to its high capacity to synthesize and accumulate intracellular lipids. The CRISPR-Cas9 system from Streptococcus pyogenes has been successfully adapted and used for genome editing in Y. lipolytica. However, as engineered strains are moved closer to industrialization, the need for finer control of transcription is still present. To overcome this challenge, we have developed CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) systems to allow modulating the transcription of endogenous genes. We begin this protocol chapter by describing how to use the CRISPRi system to repress expression of any gene in Y. lipolytica. A second method describes how to use the CRISPRa system to increase expression of native Y. lipolytica genes. Finally, we describe how CRISPRi or CRISPRa vectors can be combined to enable multiplexed activation or repression of more than one gene. The implementation of CRISPRi and CRISPRa systems improves our ability to control gene expression in Y. lipolytica and promises to enable more advanced synthetic biology and metabolic engineering studies in this host.

Keywords: transcription; crispr interference; biology; activation; lipolytica; yarrowia lipolytica

Journal Title: Methods in molecular biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.