Mechanical circulatory support devices (MCSDs), although proved to be a pillar in the clinical setting of advanced heart failure, are afflicted by thromboembolic complications. Shear-mediated platelet activation has been recognized… Click to show full abstract
Mechanical circulatory support devices (MCSDs), although proved to be a pillar in the clinical setting of advanced heart failure, are afflicted by thromboembolic complications. Shear-mediated platelet activation has been recognized to drive thromboembolic events in patients implanted with MCSDs. Despite this, to date, a clinically reliable diagnostic test for assessing platelet response to stress stimuli is still missing. Here, we describe and apply the previously developed device thrombogenicity emulation methodology to the design of a microfluidic platform able to replicate shear stress profiles representative of MCSDs. The device-specific shear-mediated platelet activation is finally assessed by the platelet activity state assay, which measures real-time thrombin production, as a marker of platelet activation level. This technique can be employed to emulate the shear stress patterns of different MCSDs, such as mechanical heart valves, ventricular assist devices, and stents.
               
Click one of the above tabs to view related content.