LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On-Chip Platelet Activation Assessment: Microfluidic Emulation of Shear Stress Profiles Induced by Mechanical Circulatory Support Devices.

Photo from wikipedia

Mechanical circulatory support devices (MCSDs), although proved to be a pillar in the clinical setting of advanced heart failure, are afflicted by thromboembolic complications. Shear-mediated platelet activation has been recognized… Click to show full abstract

Mechanical circulatory support devices (MCSDs), although proved to be a pillar in the clinical setting of advanced heart failure, are afflicted by thromboembolic complications. Shear-mediated platelet activation has been recognized to drive thromboembolic events in patients implanted with MCSDs. Despite this, to date, a clinically reliable diagnostic test for assessing platelet response to stress stimuli is still missing. Here, we describe and apply the previously developed device thrombogenicity emulation methodology to the design of a microfluidic platform able to replicate shear stress profiles representative of MCSDs. The device-specific shear-mediated platelet activation is finally assessed by the platelet activity state assay, which measures real-time thrombin production, as a marker of platelet activation level. This technique can be employed to emulate the shear stress patterns of different MCSDs, such as mechanical heart valves, ventricular assist devices, and stents.

Keywords: platelet activation; platelet; shear stress; mechanical circulatory

Journal Title: Methods in molecular biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.